精轧管是当外力超过材料的弹性极限之后,此时材料会发生塑性变形,即卸载之后材料后保留部分残余变形。无明显屈服现象的金属材料需测量其规定非比例延伸强度或规定残余伸长应力,而有明显屈服现象的金属材料,则可以测量其弹性极限、上弹性极限、下弹性极限。
精轧管弹性极限、上弹性极限、下弹性极限可以按以下公式来计算:弹性极限计算公式:Re=Fe/sO;Fe为屈服时的恒定力,SO为原始横截面积:上弹性极限计算公式:ReH=FeH/SO:FeH为屈服阶段中力首次下降前的大力:下弹性极限计算公式:ReL=FeL/So;FeL为不计初始瞬时效应时屈服阶段的小力。
如将金属的弹性极限与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的弹性极限,即固溶强化、形变强化、沉淀强化和弥散强化、晶界和亚晶强化。其中沉淀强化和细晶强化是工业合金中提高材料弹性极限的常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。
精轧管随着温度的降低与应变速率的增高,材料的弹性极限升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然弹性极限是反映材料的内在性能的一个本质指标,但应力状态不同,弹性极限值也不同。